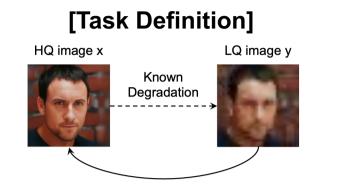


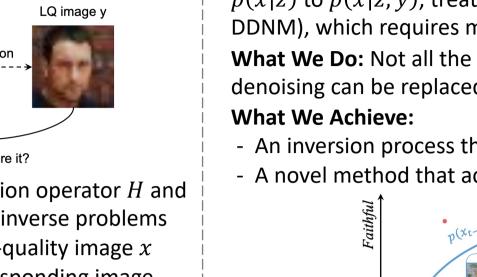
IJCAI

EJU 2024


Accelerating Diffusion Models for Inverse Problems through Shortcut Sampling

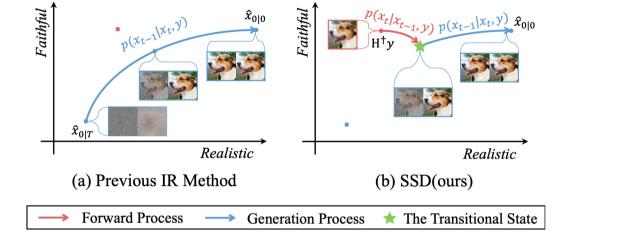
Gongye Liu, Haoze Sun, Jiayi Li, Fei Yin, Yujiu Yang

Tsinghua University


Introduction

How to restore it?

Given a known degradation operator H and the low-quality image y, inverse problems aims to restore the high-quality image xfrom y = Hx + n. Corresponding image restoration tasks including SR, colorization, deblurring, inpainting, ...


This work mainly focus on Zero-Shot IR with pretrained DM.

What Previous Works Do: Modify the posterior sampling process, from p(x|z) to p(x|z, y), treat it as a conditional generation task(DDRM, DPS, DDNM), which requires more steps to restore.

What We Do: Not all the sampling steps are required. The early stage of denoising can be replaced by a specific "inversion process"

- An inversion process that preserve the layout and structure of LQ images;
- A novel method that achieve SOTA performance with fewer steps;

Method (b) Distortion Adaptive Inversion $f_{\theta}(x_t,t)$ $\epsilon_{\theta}(x_t, t)$ (a) Shortcut Sampling Pipeline $z \sim N(0, 1)$ Shortcut (c) Back Projection Back projection

a). Shortcut Sampling Pipeline

We propose Shortcut Sampling for Diffusion(SSD). Different from previous methods that initiate from noise, We introduce Distortion Adaptive Inversion to replace the early stage of denoising, along with back projection during denoising to force consistency.

LQ Image

O Imag

 $x_{0|t} = \frac{x_t - \sqrt{1 - \alpha_t \epsilon_\theta(x_t, t)}}{\sqrt{\alpha_t}}$

(a)

(b)

(c)

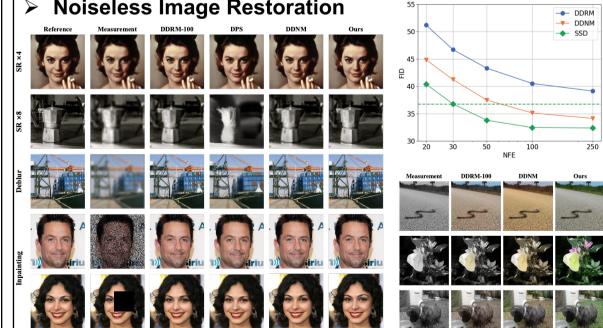
DDIM

DDPM

DA

Results

Quantitative Evaluation \succ


CelebA	$\mathbf{SR} imes 4$	$\mathbf{SR} \times 8$	Colorization	Deblur (gauss)	NFEs.
Method	PSNR↑ / FID↓ / LPIPS↓	$\text{PSNR}\uparrow$ / $\text{FID}\downarrow$ / $\text{LPIPS}\downarrow$	$\text{FID}{\downarrow}$ / $\text{LPIPS}{\downarrow}$	$\text{PSNR}\uparrow$ / $\text{FID}\downarrow$ / $\text{LPIPS}\downarrow$	111 104
$\mathbf{H}^{\dagger}\mathbf{y}$	28.02 / 128.22 / 0.301	24.77 / 153.86 / 0.460	43.99 / 0.197	19.96 / 116.28 / 0.564	0
DDRM-100	28.84 / 40.52 / 0.214	26.47 / 45.22 / 0.273	25.88 / 0.156	36.17 / 15.32 / 0.119	100
DPS	24.71 / 34.69 / 0.304	22.38 / <u>41.01</u> / 0.348	N/A	24.89 / 32.64 / 0.288	250
DDNM-100	28.85 / 35.13 / 0.206	<u>26.53</u> / 44.22 / 0.272	23.65 / 0.138	<u>38.70</u> / 4.48 / 0.062	100
SSD-100 (ours)	28.84 / <u>32.41</u> / <u>0.202</u>	26.44 / 42.42 / <u>0.267</u>	<u>23.62</u> / <u>0.138</u>	38.62 / <u>4.36</u> / <u>0.060</u>	100
DDRM-30	28.62 / 46.72 / 0.221	26.28 / 49.32 / 0.281	27.69 / 0.214	36.05 / 15.71 / 0.122	30
DDNM-30	28.76 / 41.36 / 0.213	<u>26.41</u> / 48.25 / 0.277	25.25 / 0.184	37.40 / 6.65 / 0.084	30
				20.24.14.00.10.065	20
SSD-30 (ours)	28.71 / <u>36.77</u> / <u>0.208</u>	26.32 / <u>44.97</u> / <u>0.271</u>	<u>24.11</u> / <u>0.159</u>	<u>38.34</u> / <u>4.98</u> / <u>0.065</u>	30
SSD-30 (ours) ImageNet	28.71 / <u>36.77</u> / <u>0.208</u> SR × 4	26.32 / <u>44.97</u> / <u>0.271</u> SR × 8	<u>24.11</u> / <u>0.159</u> Colorization	<u>38.34</u> / <u>4.98</u> / <u>0.065</u> Deblur (gauss)	
ImageNet	SR × 4	SR × 8	Colorization	Deblur (gauss)	
ImageNet Method	$\frac{\mathbf{SR} \times 4}{\mathbf{PSNR}\uparrow/\mathbf{FID}\downarrow/\mathbf{LPIPS}\downarrow}$	$\mathbf{SR} \times 8$ $\mathrm{PSNR} \uparrow / \mathrm{FID} \downarrow / \mathrm{LPIPS} \downarrow$	Colorization FID↓ / LPIPS↓	Deblur (gauss) PSNR↑ / FID↓ / LPIPS↓	NFEs 0
ImageNet Method H [†] y	SR × 4 PSNR↑ / FID↓ / LPIPS↓ 26.26 / 106.01 / 0.322	SR × 8 PSNR↑ / FID↓ / LPIPS↓ 22.86 / 124.89 / 0.4690	Colorization FID↓ / LPIPS↓ 27.40 / 0.231	Deblur (gauss) PSNR↑ / FID↓ / LPIPS↓ 19.33 / 102.33 / 0.553	NFEs 0 100
ImageNet Method H [†] y DDRM-100	SR × 4 PSNR↑ / FID↓ / LPIPS↓ 26.26 / 106.01 / 0.322 27.40 / 43.27 / 0.260	SR × 8 PSNR↑ / FID↓ / LPIPS↓ 22.86 / 124.89 / 0.4690 23.74 / 83.08 / 0.420	Colorization FID↓ / LPIPS↓ 27.40 / 0.231 36.44 / 0.224	Deblur (gauss) PSNR↑ / FID↓ / LPIPS↓ 19.33 / 102.33 / 0.553 36.48 / 11.81 / 0.121	NFEs 0 100 250
ImageNet Method H [†] y DDRM-100 DPS	SR × 4 PSNR↑ / FID↓ / LPIPS↓ 26.26 / 106.01 / 0.322 27.40 / 43.27 / 0.260 20.34 / 72.33 / 0.485	SR × 8 PSNR↑ / FID↓ / LPIPS↓ 22.86 / 124.89 / 0.4690 23.74 / 83.08 / 0.420 18.38 / 76.89 / 0.538	Colorization FID↓ / LPIPS↓ 27.40 / 0.231 36.44 / 0.224 N/A	Deblur (gauss) PSNR↑ / FID↓ / LPIPS↓ 19.33 / 102.33 / 0.553 36.48 / 11.81 / 0.121 24.89 / 32.64 / 0.288	NFEs 0 100 250 100
ImageNet Method H [†] y DDRM-100 DPS DDNM-100	SR × 4 PSNR↑ / FID↓ / LPIPS↓ 26.26 / 106.01 / 0.322 27.40 / 43.27 / 0.260 20.34 / 72.33 / 0.485 27.44 / 39.42 / 0.251	SR × 8 PSNR↑ / FID↓ / LPIPS↓ 22.86 / 124.89 / 0.4690 23.74 / 83.08 / 0.420 18.38 / 76.89 / 0.538 23.80 / 80.09 / 0.412	Colorization FID↓ / LPIPS↓ 27.40 / 0.231 36.44 / 0.224 N/A 36.46 / 0.219	Deblur (gauss) PSNR↑ / FID↓ / LPIPS↓ 19.33 / 102.33 / 0.553 36.48 / 11.81 / 0.121 24.89 / 32.64 / 0.288 40.48 / 3.33 / 0.041	NFEs 0 100 250 100
ImageNet Method H [†] y DDRM-100 DPS DDNM-100 SSD-100 (ours)	SR × 4 PSNR↑ / FID↓ / LPIPS↓ 26.26 / 106.01 / 0.322 27.40 / 43.27 / 0.260 20.34 / 72.33 / 0.485 27.44 / 39.42 / 0.251 27.45 / 37.69 / 0.248	SR × 8 PSNR↑ / FID↓ / LPIPS↓ 22.86 / 124.89 / 0.4690 23.74 / 83.08 / 0.420 18.38 / 76.89 / 0.538 23.80 / 80.09 / 0.412 23.76 / 82.11 / 0.409	Colorization FID↓ / LPIPS↓ 27.40 / 0.231 36.44 / 0.224 N/A 36.46 / 0.219 35.40 / 0.215	Deblur (gauss) PSNR↑ / FID↓ / LPIPS↓ 19.33 / 102.33 / 0.553 36.48 / 11.81 / 0.121 24.89 / 32.64 / 0.288 40.48 / 3.33 / 0.041 40.32 / 3.07 / 0.039	NFEs 0 100 250 100 100

Noiseless Image Restoration

LQ Image

HO Imag

HQ Image

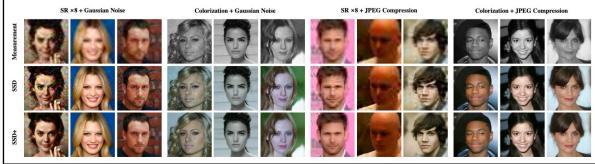
b). Distortion Adaptive Inversion

Criteria (i): Contain information from the input image; *Criteria (ii):* Retain the capacity for generating HQ images;

DDIM Inversion cannot satisfy Criteria (ii), due to the predict noise deviates from $\mathcal{N}(0, I)$

We propose distortion adaptive inversion to satisfy both:

$$\begin{aligned} x_{t+1} &= \sqrt{\alpha_{t+1}} f_{\theta}(x_t, t) + \sqrt{1 - \alpha_{t+1}} - \eta \beta_{t+1} \epsilon_{\theta}(x_t, t) \\ &+ \sqrt{\eta \beta_{t+1}} z, \qquad z \sim \mathcal{N}(0, I) \end{aligned}$$


c). Back Projection

Denoising Step:

 $x_{t-1} = (I - H^{\dagger}H)x_{0|t} + H^{\dagger}y$ **Back Projection Step:**

Noisy Image Restoration \geq

We restrict the utilization of back projection to the middle stage to adapt to noisy tasks

